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“We haven’t got the money, so we’ll have to think.”

Ernest Rutherford

“Why don’t they have a light bulb that only shines on things worth looking at?”

George Carlin

“Education is a progressive discovery of our own ignorance.”

Will Durant

“If we knew what it was we were doing, it would not be called research, Would it?”

Albert Einstein
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Innovation and creativity always thrive when we face difficulties and crises, and what

our world is currently facing is a global health crisis known as Coronavirus (Covid-19).

Covid-19 is spreading quite fast, and it has already taken many lives all over the world.

Thus, countries, including the United Arab Emirates, started to take action by issuing

new rules and regulations to stop Covid-19 from spreading any further. Wearing face

masks properly in public places is one of the most important rules the UAE government

has issued, but some people tend to break this rule. Therefore, we have proposed the

idea of designing a self-driving mask detection robot that can be deployed in public or

closed places such as universities. The robot uses AI and machine learning to detect if

people are wearing face masks correctly or not. If the robot detects people wearing face

masks incorrectly or not wearing face masks at all, it will take images of them that can

be used to punish those who violate safety rules. Face mask detection is implemented

by detecting people’s faces at first using a pre-trained face detector then applying a

trained face mask detector on the detected faces. The face mask detector was trained

using Tensorflow and OpenCV, and the neural networks we have used for our detection

models are FaceNet and MobileNetV2. The robot also includes another main feature

which is autonomous driving; this feature is implemented using Robot Operating System

(ROS) which has autonomous navigation applications using Simultaneous Localization

and Mapping (SLAM). The objective of SLAM in mobile robotics is to construct and

update the map of an unexplored environment with the help of the available sensors

attached to the robot which will be used for autonomous exploring. The robot will also

be able to avoid any obstacles on the way while moving freely on the environment drawn

by Simultaneous Localization and Mapping.
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Chapter 1

Introduction

Due to the coronavirus (COVID-19) outbreak, many countries including the UAE have

issued new rules and regulations to stop the spreading of Covid-19. One of the main

regulations the UAE government has issued is to wear face masks in public places since

COVID-19 is spread through airdrops and close contact. Wearing face masks will lower

the rate of transmission and spreading of COVID-19, and if everyone took responsibility

and wore face makes properly, this pandemic will end sooner.

Although wearing face masks in public and closed places is mandatory by the UAE

government and critical to stopping the spread of COVID-19, some people do not wear

masks or improperly wear them outside their homes which increases the risk of spreading

or catching the virus from the people around them. The UAE has set strict fines on

those who are spotted not wearing face masks or improperly wearing them. Also, to

ensure that people are always wearing face masks properly in public, monitoring them

is considered to be one of the most effective ways.

Having an individual (e.g. a security guard) monitor other people in public for wearing

face masks or not can be quite hard. In crowded places, monitoring multiple people at

once would be hard for us humans; because we could miss a few people in the progress

of looking at every person in our sights at the same time. Also, if we happened to spot

someone wearing a face mask improperly, that someone could quickly adjust his/her

face mask properly as if nothing has happened. On the other hand, having an Artificial

Intelligence (AI) robot monitor people can eliminate the incapability humans have. AI

1
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machine can be both fast and accurate in identifying whether people are wearing face

masks properly or not.

Having a camera that can monitor people and detect face masks using machine learning

and computer vision can be efficient and accurate enough to spot people who are not

wearing face masks properly or not at all. What is even better is to have a face mask

detection camera patrol through specified areas and take pictures of everyone who is

violating the face mask rules while also avoiding different obstacles in the way.

The main purpose of this project is to design a robot capable of detecting face masks

in public and closed places such as malls, parks, restaurants, markets, workplaces, uni-

versities, etc. The robot will also be able to navigate autonomously around the place

it has been deployed to. AI and machine learning will be used to detect face masks

then classify if people are wearing them properly or not. If the robot detects one person

or multiple people not wearing their face masks correctly or without face masks at all,

it will capture their image and alert them using recorded voice alerts. Navigation and

localization will be used to assist the robot in driving autonomously while avoiding any

objects on the way.

1.1 Motivation

The main motivation behind this project is to reduce the spread of the Covid-19 virus

in closed and small open areas such as universities and malls.

As we know, the UAE government made great efforts to reduce the spread of this virus by

using modern technologies and development. These developments include using thermal

cameras and face mask detection at public places entrances. These efforts have been

made to ensure the public good and safety. We as a team want to be a part of this effort

by designing this solution.

In this project, The robot will help to notify the people who are not wearing a mask

or wearing it improperly by capturing an image of the person and then generating a

sound in both Arabic and English languages to warn the person to wear the mask. The

Robot will function and run autonomously using AI and machine learning. The benefit
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of this solution is to ensure people’s safety and well being as it’s our main objective in

this project.

1.2 Problem Statement

The main problem the team is trying to tackle is to find a way to increase the safety

of well-being by reducing the spread of the Coivd-19 virus. Unfortunately, The virus

has already infected many people and took some lives as we know from now this is a

really big issue on our society health. In this project, we are attempting to develop a

self-driving mask detection robot that will detect individuals that are either not wearing

a mask or wearing it improperly and then alert them to wear their masks properly. The

robot will be controlled fully using AI, machine learning and computer vision. For the

first part, the robot will navigate autonomously and move while avoiding obstacles using

ROS and SLAM. As for the face mask detection part, the robot will use computer vision

and machine learning to detect people’s faces then apply a face mask detection model

to detect face masks on their faces and classify them. This method will be implemented

using a pre-trained face detector (FaceNet), and a trained face mask detector using

tensorflow and openCV.

1.3 Literature Review

1.3.1 YOLOv2 based Real Time Object Detection

Object detection is one of the classical problems in computer vision where we try to

let the computer see and recognize objects inside an image. There are many different

algorithms used to detect objects in images and many researchers are doing their best

to get the best AI model. However, In this research paper, YOLOv2 is used to detect

objects on real-time footage. Yolov2 is an upgrade of the original YOLO algorithm

which has some enhancements in its computing time and speed. What also makes it

better is that we can use GPU to reinforce the training speed by processing 40 fps.

Moreover, As we know YOLOv1 starts its processing procedure by dividing the image

into SxS grids and usually s=7 and when the desired objects fall in the center of a grid

that grid will be responsible to detect that object [16]. However, in the second version
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of YOLO, they used convolution with anchor boxes to detect multiple objects per grid

this enhances the algorithm by allowing it to detect multiple objects in less processing

time [1].

Figure 1.1: YOLOv2 Detection of multiple object in single frame [1]

In the paper, They trained a YOLOv2 object detector using a COCO dataset of 80

classes of random objects such as traffic lights and cars. The model is trained using

GPU and CUDA to detect and localize objects using anchor boxes which helps also in

detecting small and far objects in an image. Some of the results are shown in Figure 1.1 .

The detector was tested on a real-time video and the result of the detection was obtained

and stored in the .avi file after the testing is done [1].

1.3.2 Real-Time Object Detection Using TensorFlow

Object detection is one of the main challenges in computer vision, where we use the

computer to detect, label, and locate objects. In this research, An object detection algo-

rithm is developed using TensorFlow which is a free and open-source machine learning

that is offered by Google. It allows the users to create graphs computations to see the

performance of the model and improve it. Python is used as the front-end language and

in the backend, they are using C++. Moreover, The algorithm will detect the object and

point it out to its location by drawing a bounded box around the object. In Tensorflow

there is a pre-trained object detector that can be used directly and the developer can

also develop its model from scratch. What even makes it better than Tensorflow offers

Object detection API that contains pre-trained machine learning and object detection
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model that uses open-source data sets such as; COCO, KITTI, and Open Images Data

sets, which makes this model performance much accurate with less error. Those models

are used in many different companies to increase their growth and technologies. Face-

book uses the image recognition system to target people with their Ads, It is used in

voice recognition by Apple’s Siris and more. To start with the API it’s not mandatory to

have good knowledge about neural networks and machine learning. The API can simply

be used by importing the model file and start testing the algorithm on your test data.

As we can see in Figure 1.2 a random image from google was used to test the object

detection model. We can see that it was able to detect objects and bound them with a

bounding box. It also shows the accuracy of the detection which means how confident

id the detector about the detect object [2] .

Figure 1.2: Object Detection using tensorflow [2]
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1.3.3 Obstacle Avoidance Algorithms for Autonomous Navigation sys-

tem in Unstructured Indoor areas

The concept of robotization has become one of the hottest topics in research fields,

because of the development of technology and the availability of open-source software’s

this led the big companies to take the advantage of robots to develop a new solution to

automate most of their tasks. In this work, They studied the problem of autonomous

navigation in an indoor environment in which the Robot will move in a path and avoid

any obstacles in the way. The TurtleBot3 robot was used alongside a LIDAR sensor

which was responsible for the obstacle detection the task of the sensor was to scan 180

degrees in front of the robot to draw an MAP in RViz software which is a 3d visualization

software available in ROS environment. This software was used to visualize the data

that are coming from the LIDAR sensor to be able to control the behavior of the Robot

[17].



Chapter 2

Design

The main design processes to implement self-driving face mask detection robot include:

• Turtlebot3 Design and Configuration.

• NVIDIA Jetson Xavier NX Configuration and Deployment.

• Face mask detection model training and testing.

• Auto image capture and sound alert system.

In this section, we will discuss each design process needed for implementing a self-driving

face mask detection in addition to the overall system overview.

2.1 Requirements, Constraints, and Considerations

2.1.1 Requirements

• Design and implement a robot that can move autonomously in closed environment

while avoiding any obstacles in the way.

• Develop a machine learning model that can detect face masks on people’s faces

and classify them accordingly.

• Design and Implement a sound alerting system that alerts people who are not

wearing face masks or wearing them incorrectly.

7
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• Design and Implement a sound alerting system that alerts people who are not

wearing face masks or wearing them incorrectly.

2.1.2 Design Constraints

• Cost: no more than 4500 AED.

• Weight: The TurtleBot3 Burger can handle maximum payload of 15kg.

• Performance: The Robot can detect face masks on at least 2 people in a single

frame.

• Sustainability: The Robot power consumption should be as low as possible to

provide more sustainable and environmental Robot.

• Usability: The Robot should capture the image of people who violate the face

mask rule in public places. In addition to an alerting sound system that alerts

people who violates the face mask rule in both Arabic and English.

• Aesthetic: Since the Robot can operate in public and closed places, it should be

visually elegant to the public.

• Functionality:

– It must be able to navigate autonomously in closed environments or public

places.

– It must be able to detect and avoid any obstacles in its path.

– It must detect and classify people in three categories (Wearing mask correctly,

Wearing mask incorrectly, Not wearing Mask ).

– The robot should operate at least 2 hours without running out of charge.

• Accuracy: The robot should be able to detect and classify face masks on people’s

faces with high accuracy.

2.1.3 Considerations

The following standards and codes were considered and incorporated in our design:
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• IEEE 3652.1-2020 - IEEE Guide for Architectural Framework and Application of

Federated Machine Learning

• P2986 - Recommended Practice for Privacy and Security for Federated Machine

Learning

• P1900.8 - Standard for Training, Testing, and Evaluating Machine-Learned Spec-

trum Awareness Models

• P2671 - Standard for General Requirements of Online Detection Based on Machine

Vision in Intelligent Manufacturing

We used IEEE 3652.1-2020 and P2986 to obtain privacy and security for our data set by

not sharing it to any unauthorized people. We also used P1900.8 standard for training,

testing and cross-validation methods to be used in machine learning.

2.1.4 Cost Breakdown

Table 2.1 shows all the cost breakdown of all used components in this project:

Table 2.1: Cost Breakdown

Item Cost

Turtlebot3 Burger 2178.75 AED

Jetson Xavier NX 1999 AED

Blutooth Speaker 70 AED

Logitech Webcam C920 320 AED

x3 4.2V Li-on Batteries 45 AED

Long Nuts & Spacer 50 AED

Plastic Holders 20 AED

MicroSD Card 64GB 35 AED

Total 4717.75 AED

2.2 Design Process

2.2.1 Face Detection Software

When we first started in our project we all agreed to use YOLO v2 and Matlab for

our machine learning because it was what we learn by Dr. Mohammed Ghazal during
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his course ”Special Topic: Computer Vision and Machine Learning”. We began with

using Matlab to create the dataset by using a video we captured using our phones of

each other where we change our face position and face masks then label each frame with

the corresponding label. While one of us was working on labeling the others researched

for ways to make this easier since it was very time consuming and will result in a

dataset including only our faces. We came across a website called Kaggle which has

a large amount of datasets for face masks; However, it wasn’t compatible with YOLO

v2 so through further research we found out and learned Python’s Tensorflow along

with its other modules which are compatible with the datasets we found. After further

discussion we came into the conclusion to use Python’s Tensorflow since it will further

our knowledge and allow us access to more datasets. Learning and getting Tensorflow

to work was a challenge because it had many requirements and wasn’t as user friendly

as YOLO v2 but with it came versatility.

2.2.2 Robot Design

2.3 Component Design

2.3.1 Nvidia Jetson Xavier NX

After some research, we chose to deploy our mask detection model into the Nividia Jet-

son Xavier NX witch is a powerful microprocessor board that is designed especially for

AI applications. The Nvidia Jetson NX comes with Nvidia Volta GPU which contains 48

Tensor cores, 6-core Nvidia Carmel CPU, and 8 GB memory shared between CPU and

GPU which can run our mask detection model with acceptable performance. Moreover,

the Nividia Jetson Xavier NX has an advantage in processing computer vision applica-

tions using high-quality cameras which can give us up to 60 frames per second in full

HD (1080p).
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Figure 2.1: Nvidia Jetson Xavier NX [3]

2.3.2 Turtlebot3

TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot for use in

education, research, hobby, and product prototyping. The TurtleBot3’s core technology

is SLAM, Navigation and Manipulation, making it suitable for home service robots. The

TurtleBot can run SLAM(simultaneous localization and mapping) algorithms to build a

map and can drive around your room. Also, it can be controlled remotely from a laptop,

joypad or Android-based smart phone. TurtleBot3 Burger achieves this goal by using

the following components Raspberry pi 3, OpenCR, HLS-LFCD2, Dynamixel XL430 x2,

and Li-PO 11.1V 1800 mAh Battery.
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Figure 2.2: TurtleBot3 Burger [4]

2.3.2.1 OpenCR

OpenCR is used for its ROS capabilities, which will allow us to connect many different

hardware components on it and control them easily using the Raspberry pi 3. We will

use the OpenCR to connect the motors and control the navigation and movement of the

robot.

Figure 2.3: OpenCR [5]
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2.3.2.2 HLS-LFCD2 (LIDAR sensor)

We use a Lidar sensor that comes with the TurtleBot3 burger bundle. The Lidar has

better Accuracy when it comes to obstacle detection from other components such as a

camera or an ultrasonic sensor. What also makes it better for our work is that the Lidar

can cover 360 Degrees to avoid any obstacles from the near environment.

Figure 2.4: HLS-LFCD2 (Lidar sensor) [6]

2.3.2.3 11.1V 1800mAh Li-PO Rechargeable Battery

To power the Raspberry pi 3 and TurtleBot3 actuators we used an 11.1V Li-PO Bat-

tery which provides us with a good amount of voltage and current, with a capacity of

1800mAh which can run the Robot up to 2 Hours.

Figure 2.5: Li-PO Rechargeable Battery [7]

2.3.3 Logitech C920

To have better result in mask detection we choice Logitech C920 camera which can give

us up to full HD resolution with 78 degree view.It give us clear picture which will be

process in our mask detection code so whenever we have clearer picture we get better
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result in mask detection.It is flexible camera that we can adjust it in different angle

because we are installing it below the leader so we need to adjust in in 45 degree.

Figure 2.6: Logitech C920 camera [8]

2.3.4 Li-ion 18650

To power up our Nividea Jetson Xavior NX we connect three Li-on 4.2V 18650 battery’s

in series to give us 12.6 Voltage which can start the Nividea Jetson Xavior NX. Li-on

18650 it has advantage because it is high capacity battery which have around 3600 mAh.

Figure 2.7: Li-ion 18650 [9]

2.3.5 MicroSD

Both Nvidia Jetson Xavier NX and Raspberry pi needs an SD card as main storage of

the system so we get two of 64 GB Micro SD card to use it as main storage for our

operating system and some of other application.We get 64 GB because it will give us
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enough space to install as many as python liberty’s on it and other application such as

slam and python compiler.

Figure 2.8: MicroSD [10]

2.3.5.1 Nvidia Jetson Xavier NX Operating System

After following Nvidia guide line for Jetson Xavier Nx we have seen that it use Linux

operating system which design specially for it. It is operating system has very similar

interface as Ubuntu interface and has additional applications and drivers that designed

for Jetson Xavier

2.3.5.2 Raspberry Pi 3B+ Raspbian Operating System

Also when we are following the turtle bot initial setup we found that there are many

operating systems for raspberry pi such as melodic and kinetic. After some reading we

choice a melodic because we can control it using our Jetson Xavier operating system.

Figure 2.9: Raspberry pi 3B+ [11]
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2.3.6 Bluetooth speaker

We used a Bluetooth Speaker for our alerting system. The speaker will alert the people

who are either not wearing their mask properly or not wearing it at all. The speaker is

connected to the Jetson Xavier through a Bluetooth connection.

Figure 2.10: Bluetooth speaker [12]

2.3.7 Face mask detection design process

2.3.7.1 Software requirements

Jetson OS: Ubuntu 18.04 In order to be able to use the NVIDIA Jetson Xavier

NX Developer Kit you will have it’s Jetson NX Developer Kit SD Card Image written

in the microSD to do that you will need to connect the microSD to your computer and

download the Jetson NX Developer Kit SD Card Image from the nvidia’s developer

offical website as seen in the Figure 2.11.

Figure 2.11: Where to find the Jetson NX Developer Kit SD Card Image in their
website

https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads
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After you download the image you will need to download SD Memory Formatter and

launch it and select the card drive and then select quick format and leave the volume

label as blank then click format and click yes in the warning dialog as seen in Figure

2.12.

Figure 2.12: SD Card Formatter Software

After you are done formatting the microSD you will need to download Etcher and launch

it and click ”Select Image” and choose the Jetson NX Developer Kit SD Card Image

you downloaded earlier and then select drive for the microSD and click ”Flash!” as seen

in Figure 2.13.

https://www.sdcard.org/downloads/formatter/sd-memory-card-formatter-for-windows-download/
https://www.balena.io/etcher/
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Figure 2.13: Etcher’s Last Step for Writing into a microSD

once it is done writing to the microSD, you can remove the microSD and connect it to

NVIDIA Jetson Xavier NX Developer Kit as shown in the Figure 2.14.

Figure 2.14: Where to insert the microSD in NVIDIA Jetson Xavier NX Developer
Kit
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Now you will need to connect keyboard, mouse to the USB ports of NVIDIA Jetson

Xavier NX Developer Kit and monitor to it’s HDMI Port and connect NVIDIA Jetson

Xavier NX Developer Kit to a power supply. Now boot up the NVIDIA Jetson Xavier

NX Developer Kit and review and accept ”NVIDIA Jetson software EULA” then select

the system language, keyboard layout, and time zone. Connect to the internet using

wire or wireless network and create a username, password, and computer name then log

in which will land you in this screen as Figure 2.15.

Figure 2.15: First Boot-up Screen

Python Modules Fortunately the Jetson NX Developer Kit SD Card Image comes

prepacked with python, CUDA, and CUDNN which are needed to run tensorflow in

GPU instead of CPU. To be able to run our python code for face and mask detection

you will need a couple of python modules like tensforflow, keras, imutils, and numpy to

name a few. We will show which version you need for each and how to install them.

First you will need make sure the pip installer and default modules are up to date to do

that run the following three commands.

sudo apt -get upgrade

sudo apt -get update

sudo pip install --upgrade pip

Tensorflow is an open-source made by Google for machine learning and it provides a

number of useful libraries that will help us achieve detection. For our code you will
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need a Tensorflow with a version of 1.15.2 or higher and to install that you will need to

open up the terminal in the Ubuntu operating system of the NVIDIA Jetson Xavier NX

Developer Kit and type the following command.

sudo pip install tensorflow >=1.15.2

Keras is a high level API which acts as the interface for tensorflow library and it can

be installed for python using the command below.

sudo pip install keras ==2.3.1

Imutils is a python module which offers many image processing options like resizing,

rotation, and etc. You will need to add it to your python module library by writing the

following command in the terminal.

sudo pip install imutils ==0.5.3

NumPy is a Python package that adds support for big, multi-dimensional arrays and

matrices to the python language. To add it to your python module library you will need

to write the command below in the Ubuntu Terminal.

sudo pip install numpy ==1.18.2

The OpenCV-Python library is a set of Python bindings for solving computer vision

issues. OpenCV-Python makes use of Numpy Python Module to solve computer vision

issues so it essential to have them both installed. In the previous step you installed

numpy, so to install OpenCV-Python you need to run this command in the terminal of

Ubuntu.

sudo pip install opencv -python ==4.2.0.*

MatplotLib is the last module you need to install and it is a plotting library for

the Python programming language and its numerical mathematics extension NumPy.

Matplotlib is another module that makes use of numpy and to include it in your python

module library by running the following command.

sudo pip install scipy ==1.4.1

Threading is a default python module which will allows us to increase the speed in

which we capture camera frames by running it in a separate thread, and threading will
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also allow us to call playsound function that can play voice alerts in Arabic and English

from mp3 files.

Time is another default python module that helps capture current time during the

execution of our code.

OS is the operating system python module that can be used to write the images into

files so we can keep a folder of images of people who were spotted not wearing a mask

or wearing it incorrectly.

Math python module is useful because using it we can calculate the distance between

faces detected each frame by using the distance formula 2.1.

Distance =
√

(x1 − x2)2 + (y1 − y2)2 (2.1)

Dataset In order to train our mask detector model we will need a large enough dataset

of images with each categorized into their respective label. Fortunately a website Kaggle

provides many datasets for various machine learning training needs, so with the lack of

manpower we have and the pandemic we are in, creating a good large dataset is almost

impossible to do. We were able to find three Kaggle Datasets that will help us create our

mask model. The three kaggle datasets we used and had to manually categorized each

image are Face Mask Detection, Face Mask Detection 12K Images Dataset, and Face

Mask Detection Dataset; However, in order to save you the time of having to manually

download them and categorized them into three folders, we have uploaded them ready

for use in this dataset.zip file.

Serialized Face Detector Model The way we put our code is that first we will

detect a face then pass that face into our face mask detector which will label it into

Correctly worn mask, Incorrectly worn mask, Without mask. There are many prebuilt

face detection models that are available in the internet so, instead of having to create a

face detection model from scratch we used one from the internet with high accuracy. In

order to detect masks using our python code you will need to download face detector.rar

file and it consists of a prototxt and caffemodel file.

https://www.kaggle.com/datasets
https://www.kaggle.com/andrewmvd/face-mask-detection
https://www.kaggle.com/ashishjangra27/face-mask-12k-images-dataset
https://www.kaggle.com/omkargurav/face-mask-dataset
https://www.kaggle.com/omkargurav/face-mask-dataset
https://studentsaduac-my.sharepoint.com/:u:/g/personal/1064958_students_adu_ac_ae/Ee19OmzW2sBIiU4yFRv6F8cBFMJWCQnK9mDYRk6cmHRAdg?e=xXhSEi
https://studentsaduac-my.sharepoint.com/:u:/g/personal/1061007_students_adu_ac_ae/EUGxxSjUq_VLmrjjdGguL5sB-UMSV6CpB2Gz95ZpiPB0Qw?e=ROvxAR
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prototxt file has image classification or segmentation model that used to be trained in

the caffe. Prototxt is considered a prototype machine learning model created for use

using caffe and are used to create the .caffemodel file.

caffemodel file is the model that was created using caffe along with large datasets in

order to have high accuracy with detecting faces.

2.3.8 Face mask detection model training

Figure 2.16: Design Process for face mask detection model training

Our inputs for the face mask detection model training code is the dataset, MobileNetV2

pretrained model, and the training variable. The dataset is first categorized into 3

labels correct, incorrect, and no mask and put into their respective folder inside the

dataset folder then each image will be slightly altered using the image data generator

provided by tensorflow which will change the rotation, size, zoom, and shift of the image

to increase the accuracy then will divide the dataset into training, testing, and validation.
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Figure 2.17: Creating altered images using Image Data Generator

MobileNetV2 is a pretrained module included with tensorflow that aims to help train-

ing modules, increase accuracy, and speed. Finally we picked the training variables

like the initial training rate, batch size which will dictates how many training samples it

will work through before updating the internal parameters, and finally the image size.

The higher the image size is the slower it will be detecting the masks but with higher

accuracy and since we are working on a real time application we selected an image size

that is in middle so we get good accuracy and speed.
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Figure 2.18: Splitting Dataset into 70% Training, 20% Testing, and 10% validation

Now for the outputs we will get the model that will be used in our detection code,

training loss and accuracy plot, and classification report to see how well our training

data set is doing against the test and validation data sets.

Figure 2.19: Different Initial Training Rates Vs Loss [13]
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2.3.9 Face mask model detection process

Figure 2.20: Design Process for face mask detection model detection

Each camera frame first goes through the pre-trained face detector module which will

crop each face it detects that has confidence of 70% or higher and that face will be

outputted in a BRG color along with its X and Y coordinates, so we need to change its

color back to RBG then resize all this cropped face its 224 pixels wide and tall like we

trained our mask detector model. Now each of these pre-processed cropped face images

will go through our face detector model we made and the classification with the highest

confidence will get that label. Using the coordinates of the faces and the labels it will

go back to the original image and draw rectangles on the faces with color representing

the label and the label with confidence percentage written above it.
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Figure 2.21: Getting the middle point from the face detected

We wanted to be able to take a screenshot for every new person that isn’t wearing a

mask or wearing incorrectly, so the default method of having it take screenshot every

time there is someone in the frame not wearing mask or wearing it incorrectly isn’t

going to cut it since each second we loop many times and that would result in waste of

space. We came up with an idea to track each person in the frame so that it wont take

multiple screen shots for a single person and we did that by taking the middle point of

his face as seen in Figure 2.21 Then calculate the distance 2.1 between the first frame

and the next one and if that distance is above 25 and the new person is not wearing

a mask or wearing it incorrectly then it will take a screenshot. This idea didn’t work

because someone running or is close the camera will make distance calculate really high

and think it is a new person and results in taking multiple screenshots.

Our second idea was to track the number of people wearing the mask incorrectly or not

wearing a mask each frame and comparing it with the next frame. If the next frame has

a higher total number of people wearing mask incorrectly or not wearing a mask then it

would take a screenshot and play the audio as seen in Figure 2.22. This idea was simpler

to implement and worked even if the person was wearing a mask then took it off unlike

the first idea.
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Figure 2.22: Tracking the number of faces wearing the mask incorrectly or no mask.
[14]

Now to play the audio we used a Bluetooth speaker that is connected to the jetson and

added four audio files to the jetson two for wearing it incorrectly in Arabic and English

and two for not wearing a mask in Arabic and English. We used threads so that it will

not hinder the face mask detection code and limited it to a single thread so that the

audio will not overlap.

Figure 2.23: Audio Phrases for wearing mask incorrectly and not wearing a mask.

2.3.10 Autonomous navigation design process

2.3.10.1 Software requirements

In order to use ROS packages, We have to use a PC with Linux 18.04 version so we

decide to use our jetson Xavier as our Remote PC. The first step we need to install ROS

1 in or Remote PC by running the following commands in the terminal.
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sudo apt update

sudo apt upgrade

wget https :// raw.githubusercontent.com/ROBOTIS -GIT/robotis_tools/master/install_ros_melodic.sh

chmod 755 ./ install_ros_melodic.sh

bash ./ install_ros_melodic.sh

After we make sure that the ROS package has been installing. We install the second

package which is Dependent ROS 1 Packages by running the following command.

sudo apt -get install ros -melodic -joy ros -melodic -teleop -twist -joy \

ros -melodic -teleop -twist -keyboard ros -melodic -laser -proc \

ros -melodic -rgbd -launch ros -melodic -depthimage -to-laserscan \

ros -melodic -rosserial -arduino ros -melodic -rosserial -python \

ros -melodic -rosserial -server ros -melodic -rosserial -client \

ros -melodic -rosserial -msgs ros -melodic -amcl ros -melodic -map -server \

ros -melodic -move -base ros -melodic -urdf ros -melodic -xacro \

ros -melodic -compressed -image -transport ros -melodic -rqt* \

ros -melodic -gmapping ros -melodic -navigation ros -melodic -interactive -markers

After installing the ROS package we need also to install the ROS package designed

especially for turtlebot3 by running the following three commands.

sudo apt -get install ros -melodic -dynamixel -sdk

sudo apt -get install ros -melodic -turtlebot3 -msgs

sudo apt -get install ros -melodic -turtlebot3

Next, we need to choose our Turtlebot3 model so as we are using the burger model we

will run the next command.

echo "export TURTLEBOT3_MODEL=burger" >> ~/. bashrc

Now we need to set up our raspberry pi 3b+. First, we need to download a ROS1

Melodic image for raspberry pi 3b+ and unzip it. After it, we launch SD Card Formater

same as we used for the Nividea setup. Then we select the card drive and then select a

quick format and leave the volume label as blank then click format and click yes in the

warning dialog as seen in the Figure 2.24.
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Figure 2.24: SD Card Formatter Software

After you are done formatting the microSD you will need to download Etcher and launch

it and click ”Select Image” and choose the ROS1 Melodic Image and then select drive

for the microSD and click ”Flash!” as seen in the Figure 2.25.

Figure 2.25: Etcher’s Last Step for Writing into a microSD

https://www.balena.io/etcher/
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Once it is done writing to the microSD, you will need to configure the wifi setting from

your PC by running the following command.

cd /media/$USER/writable/etc/netplan

sudo nano 50-cloud -init.yaml

Then it will appear some text you need to add your network name next to the ”WIFI-

SSID:” and network password next to ”password ” as showing in Figure 2.26 then save

by pressing ctrl + s

Figure 2.26: 50-cloud-init.yaml file contant

After finishing the above steps you need to take the SD Card and insert it into the

raspberry pi. Now you will need to connect the keyboard, mouse to the USB ports

of Raspberry pi 3b+ and monitor to its HDMI Port. Now boot up the Raspberry pi

3b+ and you will need to enter the default username which is ”ubuntu” and password

”turtlebot” after it you need to run some command to finish ROS Configuration.

The following steps should be done for both raspberry and remote PC. You need to get

IP for both Raspberry pi and Remote PC by running the following command.

ifconfig
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Then edit the .bashrc file by running the next code.

nano ~/. bashrc

Next, we need to replace ”IP-ADDRES-OF-REMOTE-PC” to our remote PC IP and

replace ”IP-ADDRES-OF-RASPBERRY-PI-3” to our Raspberry pi 3b+ IP as showing

in Figure 2.27.

Figure 2.27: Where you need to change the IP Addresses

lastly, you need to apply the change by running the next command.

source ~/. bashrc

Now we need some steps to set up our Open CR. First, need to connect Open CR with

USB to Raspberry pi then we need to install some Packages on a raspberry pi to insert

it to Open CR firmware by running the following code.

sudo dpkg --add -architecture armhf

sudo apt -get update

sudo apt -get install libc6:armhf

export OPENCR_PORT =/dev/ttyACM0

export OPENCR_MODEL=burger

rm -rf ./ opencr_update.tar.bz2

wget https :// github.com/ROBOTIS -GIT/OpenCR -Binaries/raw/master/turtlebot3/ROS1/latest/opencr_update.tar.bz2

tar -xvf opencr_update.tar.bz2

After Downloading the packages we need to upload them to Open CR by executing the

next commands.

cd ./ opencr_update

./ update.sh OPENCR_PORT OPENCR_MODEL.opencr

2.3.10.2 TurtleBot3 Assembly

• In first layer, we attach the two motors that will make the robot move freely and

use the empty space to put our main battery (Li-Po 11.1V) for autonomous driving

system.
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• In second layer, we attach the openCR because it needs to be charged from the

main battery and the motor will be connect with it by wire .

• In third layer, We attach raspberry pi which will take power from oopencr and it

will connect to opencr from usb to have communication.

• In fourth layer, We attach our NVIDIA jetson xavier nx because it will connect

to the separate battery which we will install in same layer and to the next layer

which will have the camera.

• In the fifth layer, We build a long layer to attach camera out of the main frame of

the turtlebot to have full view of the area.Also we attach the speaker behind the

camera were we have empty space and to spread the width

• In sixth layer and the last layer, we have the lidar that will scan the are to make

the robot to avoid any obstacles. We choices it to be in last layer because it will

scan 360 degree so in last layer there will not be anything that not be disturbed.

2.3.10.3 Map drawing and autonomous navigation using SLAM

After finishing the installation of all ROS packages and assembling our robot now we

are ready to start our robot and create our map. To create Map we will use slam so

first, we need to Run the Slam node by running the following command in Remote PC.

roscore

Then you need a new terminal to connect to raspberry pi with it is IP Address by

executing the next two commands.

ssh pi@{IP_ADDRESS_OF_RASPBERRY_PI}

roslaunch turtlebot3_bringup turtlebot3_robot.launch

Also, you need another terminal to lunch the slam node by running the next code in the

new terminal.

export TURTLEBOT3_MODEL=${TB3_MODEL}

roslaunch turtlebot3_slam turtlebot3_slam.launch

If you succeed to run the slam node then we need something to control the robot so we

will use the teleoperation node which gives users the ability to control turtlebot from
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the Remote PC keyboard. We can run it by executing the following commands in a new

terminal.

export TURTLEBOT3_MODEL=burger

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

After finishing the mapping we can test our robot by pressing the pose estimation to

initialize robot location in the map and we use navigation bottom to select the point to

which we want the robot to travel.

In our robot we want the robot to go in an infinite location in an infinite loop so we

edit in the main python code that will give some pointers that will make the robot start

moving and avoid any obstacles.

2.4 System Overview

Figure 2.28: System Overview Diagram
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Figure 2.29: Face mask detection System Diagram

Figure 2.30: TurtleBot3 System Diagram



Chapter 3

Experimental Testing, Results

and Analysis

3.1 Experimental Testing & Results

3.1.1 Test 1: Face mask detection using YOLOv2 object detector

• Test Description: In this test, we used YOLOv2 object detection to detect face

masks on people’s faces and label them accordingly. The labels we have used for

this test are ”Full Mask”, ”Nose Exposed” and ”Chin Mask”.

• Test Steps:

1. We collected over 100 images of people wearing masks correctly and not (Nose

exposed and Chin Mask) from online sources. See: Face mask detection

dataset

2. We resized all the images to 416x416 to match the input layer of YOLOv2

using MATLAB.

srcFiles = dir(’F:\mask detection\images \*.jpg’);

for i = 1 : length(srcFiles)

filename = strcat(’F:\mask detection\images\’,srcFiles(i).name);

im = imread(filename );

k = imresize(im ,[300 ,300]);

newfilename = strcat(’F:\mask detection\images\’,srcFiles(i).name);

imwrite(k, newfilename , ’jpg’);

end

35

https://www.kaggle.com/andrewmvd/face-mask-detection
https://www.kaggle.com/andrewmvd/face-mask-detection
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3. Then, we started an image labeling session on MATLAB and imported the

resized images.

4. We created 3 labels ”Full Mask”, ”Nosed Exposed” and ”Chin Mask”.

5. We started labeling face masks on each image according to its right label.

Figure 3.1: Image labeling session in MATLAB

6. We exported the ground truth data to our workplace which will be used

as training data. The ground truth data includes the image path + the

coordinates of the label on that image. The labeling shape we used is of type

”box label” which has 4 points that will represent the coordinates of the label

on the image.

Figure 3.2: Training data exported from image labeling session
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7. We calculated the Anchor boxes and Intersection over Union (IoU) using

the ”estimateAnchorBoxes” built-in function in MATLAB which takes the

training data and number of Anchor boxes as its arguments.

data = load(" trainingDataMask.mat");

maskDataset = data.gTruth;

summary(maskDataset );

trainingData = boxLabelDatastore(maskDataset (:,2:end));

numAnchors = 4;

[anchorBoxes ,meanIoU] = estimateAnchorBoxes(trainingData ,

numAnchors );

anchorBoxes

meanIoU

8. We designed the YOLOv2 network layers which include the input layer, filter

size and middle layers.

inputLayer = imageInputLayer ([128 128 3],’Name’,’input’,

’Normalization ’,’none’);

filterSize = [3 3];

middleLayers = [ convolution2dLayer(filterSize , 16, ’Padding ’

, 1,’Name’,’conv_1 ’,’WeightsInitializer ’,’narrow -normal ’)

batchNormalizationLayer(’Name’,’BN1’)

reluLayer(’Name’,’relu_1 ’)

maxPooling2dLayer (2, ’Stride ’,2,’Name’,’maxpool1 ’)

convolution2dLayer(filterSize , 32, ’Padding ’, 1,’Name’, ’conv_2 ’,

’WeightsInitializer ’,’narrow -normal ’)

batchNormalizationLayer(’Name’,’BN2’)

reluLayer(’Name’,’relu_2 ’)

maxPooling2dLayer (2, ’Stride ’,2,’Name’,’maxpool2 ’)

convolution2dLayer(filterSize , 64, ’Padding ’, 1,’Name’,’conv_3 ’,

’WeightsInitializer ’,’narrow -normal ’)

batchNormalizationLayer(’Name’,’BN3’)

reluLayer(’Name’,’relu_3 ’)

maxPooling2dLayer (2, ’Stride ’,2,’Name’,’maxpool3 ’)

convolution2dLayer(filterSize , 128, ’Padding ’, 1,’Name’,’conv_4 ’,

’WeightsInitializer ’,’narrow -normal ’)

batchNormalizationLayer(’Name’,’BN4’)

reluLayer(’Name’,’relu_4 ’)

];

9. We assembled the YOLOv2 network which includes the front layer, filter size

and middle layers.

lgraph = yolov2Layers ([128 128 3] ,numClasses ,
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anchorBoxes ,lgraph ,’relu_4 ’);

10. We included training options and called the YOLOv2 training function which

is a built-in function in MATLAB called ”trainYOLOv2ObjectDetector”.

options = trainingOptions(’sgdm’, ...

’InitialLearnRate ’ ,0.001, ...

’Verbose ’,true ,’MiniBatchSize ’,8,’MaxEpochs ’ ,16,...

’Shuffle ’,’every -epoch ’,’VerboseFrequency ’,50, ...

’DispatchInBackground ’,false ,...

’ExecutionEnvironment ’,’cpu’);

[detectorYolo2 , info] =

trainYOLOv2ObjectDetector(trainingData ,lgraph ,options );

11. We trained the model and observed the learning loss in each epoch.

Figure 3.3: Training the YOLOv2 detector

12. We obtained the YOLOv2 object detector as a result of training the YOLOv2

object detector.

13. We used the YOLOv2 object detector on images, videos and live video cap-

ture.

• Expected Results: Accurate and unbiased YOLOv2 detector that can detect

face masks from reasonable distances and angles of multiple people in a frame and

correctly labeling them.

• Observed Results: We observed that the YOLOv2 detector is quite inaccurate

when it comes to detecting multiple people in one frame, and the detector had a

hard time detecting face masks from long distance and different angles.

• Acceptance Criteria: The YOLOv2 object detector was able to detect face

masks from distances over 3m and wide angles of people’s faces when it comes
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to images, but it showed low performance when it comes to live stream camera

detection.

• Test Results: The test results succeeded when it comes to short distances, de-

tecting individuals and while they are looking straight at the camera, but it could

not meet the criteria of our test.

Although the YOLOv2 detector showed low performance on live stream camera, the

results of applying the detector on images were quite accurate.

Figure 3.4: Full face mask detection using YOLOv2 object detection

Figure 3.5: Full face mask detection using YOLOv2 object detection
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Figure 3.6: Nosed exposed detection using YOLOv2 object detection

Figure 3.7: Mask under chin detection using YOLOv2 object detection

3.1.2 Test 2: Face mask detection using Tensorflow and OpenCV on

two categories

• Test Description: In this test, we used Tensorflow2 to train and run deep neural

networks (MobileNetV2) to obtain a detector model that is able to detect face

masks and label them correctly. The labels we used for this test are ”Correct” and

”Incorrect” where incorrect includes wearing the mask under the chin, exposing
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the nose and not wearing the mask at all. Additionally, we used a pre-trained neu-

ral network (FaceNet) to detect people’s faces before applying the mask detector

model. Total of labels for this test are 2 (”Correct” and ”Incorrect”)

• Test Steps:

1. The first step will be collecting our data which contains images of people

wearing face masks correctly and not. The number of images we obtained

are over 14,000 where 7500 are labeled as ”correct” and 7500 are labeled

as ”incorrect”. The data we have used are from a free and available online

source. See: Correct and Incorrect face mask dataset

2. Install Anaconda3 on PC and launch the Anaconda prompt.

3. Install all required packages to train the model. These packages include Ten-

sorflow2, Keras2, numpy, openCV, matplotlib and scipy from scikit-learn.

4. Create new python file for training the detection model.

5. Import all necessary packages needed for training.

# import the necessary packages

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.preprocessing.image import load_img

from tensorflow.keras.applications import MobileNetV2

from sklearn.model_selection import train_test_split

from tensorflow.keras.layers import AveragePooling2D

from sklearn.metrics import classification_report

from tensorflow.keras.utils import to_categorical

from sklearn.preprocessing import LabelBinarizer

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.layers import Flatten

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Input

from tensorflow.keras.models import Model

import matplotlib.pyplot as plt

from imutils import paths

import numpy as np

import os

6. Initialize variables for learning rate, number of epochs and batch size.

https://github.com/cabani/MaskedFace-Net/blob/master/README.md
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INIT_LR = 1e-4

EPOCHS = 20

BS = 32

7. Save the path that includes the dataset directory in a variable, and save the

two categories that are included in the directory in another variable.

DIRECTORY = r"F:\Face mask detection\dataset"

CATEGORIES = ["correct", "incorrect"]

8. Join each image from the dataset directory with its correct category and resize

them to 224x224 (Same size as the input layer of the MobileNetV2 CNN).

data = []

labels = []

for category in CATEGORIES:

path = os.path.join(DIRECTORY , category)

for img in os.listdir(path):

img_path = os.path.join(path , img)

image = load_img(img_path , target_size =(224, 224))

image = img_to_array(image)

image = preprocess_input(image)

data.append(image)

labels.append(category)

9. Perform one-hot encoding on the labels since working with categorical data

directly is expensive, and one-hot encoding converts categories into numbers.

lb = LabelBinarizer ()

labels = lb.fit_transform(labels)

labels = to_categorical(labels)

data = np.array(data)

labels = np.array(labels)

10. Use the train test split function to split the data and its labels to training

and testing (we used 80% for training and 20% for testing)

(trainX , testX , trainY , testY) =

train_test_split(data , labels , test_size =0.20 ,

stratify=labels , random_state =42)
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11. Construct training image generator for data augmentation.

aug = ImageDataGenerator(

rotation_range =7,

zoom_range =0.05,

width_shift_range =0.15,

height_shift_range =0.15,

shear_range =0.1,

horizontal_flip=True ,

fill_mode="nearest")

12. Load the MobileNetV2 network and ensure the head layer is not included.

baseModel = MobileNetV2(weights="imagenet", include_top=False ,

input_tensor=Input(shape =(224 , 224, 3)))

13. Then, we will construct the head of the model that will be placed on top of

the base model

# base model

headModel = baseModel.output

headModel = AveragePooling2D(pool_size =(7, 7))( headModel)

headModel = Flatten(name="flatten")( headModel)

headModel = Dense (128, activation="relu")( headModel)

headModel = Dropout (0.5)( headModel)

headModel = Dense(2, activation="softmax")( headModel)

14. Next, we will place the head model on top of the base model to be our actual

model that we will train.

model = Model(inputs=baseModel.input , outputs=headModel)

15. After that, we will compile our model using Adam optimizer.

opt = Adam(lr=INIT_LR , decay=INIT_LR / EPOCHS)

model.compile(loss="binary_crossentropy", optimizer=opt ,

metrics =["accuracy"])

16. Then, we will use the fit function to train the full model.

Head = model.fit(

aug.flow(trainX , trainY , batch_size=BS),

steps_per_epoch=len(trainX) // BS,

validation_data =(testX , testY),
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validation_steps=len(testX) // BS ,

epochs=EPOCHS)

17. While training, we can make predictions on the testing set, and display a

classification report of the training process.

predIdxs = model.predict(testX , batch_size=BS)

predIdxs = np.argmax(predIdxs , axis =1)

# show a nicely formatted classification report

print(classification_report(testY.argmax(axis=1), predIdxs ,

target_names=lb.classes_ ))

# save the detection model

print("[INFO] saving mask detector model ...")

model.save("model -3. model", save_format="h5")

18. Finally, we can print the training and validation loss and accuracy of our

model

N = EPOCHS

plt.style.use("ggplot")

plt.figure ()

plt.plot(np.arange(0, N), H.history["loss"], label="train_loss")

plt.plot(np.arange(0, N), H.history["val_loss"], label="val_loss")

plt.plot(np.arange(0, N), H.history["accuracy"], label="train_acc")

plt.plot(np.arange(0, N), H.history["val_accuracy"], label="val_acc")

plt.title("Training Loss and Accuracy")

plt.xlabel("Epoch #")

plt.ylabel("Loss/Accuracy")

plt.legend(loc="lower left")

plt.savefig("plot.png")

19. We can use the model to test it on the Jetson Xavier NX without training.

This can be done by copying the model to the Jetson, and use the testing

code developed to test the model on the Jetson Xavier NX.

20. Before testing the model on the Jetson, we need to install tensorflow and all

the necessary packages for testing the model. See: Installing Tensorflow on

Jetson Xavier NX

21. Connect the Logitech c920 camera to the Jetson NX and run the testing code

using python3.

https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html
https://docs.nvidia.com/deeplearning/frameworks/install-tf-jetson-platform/index.html
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22. In the testing code, we import the necessary packages to test our detection

model.

from tensorflow.keras.models import load_model

from detector import detect_mask

import cv2

import os

23. Next, we load the face detector model from disk.

print("[INFO] loading face detector model ...")

prototxtPath = "deploy.prototxt"

weightsPath = "res10_300x300_ssd_iter_140000.caffemodel"

face_detector = cv2.dnn.readNet(prototxtPath , weightsPath)

24. Also, we load the face mask detector model from disk.

print("[INFO] loading face mask detector model ...")

mask_detector_model_path = "ciw60.h5"

mask_detector = load_model(mask_detector_model_path)

25. Next, we Initialize the video stream.

capture = cv2.VideoCapture (0, cv2.CAP_DSHOW)

26. Then, we loop over the frames from the video stream, and apply the face

detector and face mask detector to the frame using the imported function.

while True:

# Grab the frame from the threaded video stream

flags , frame = capture.read()

# Detect faces in the frame and determine if they are wearing

a face mask or not

detect_mask(frame , face_detector , mask_detector , 0.8)

# Show the output frame

cv2.imshow("Frame", frame)

27. Now inside the detect mask function we will declare the labels and colors

representing them then load the input image which is the frame from the

camera construct a blob from it for the face detector
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def detect_mask(img , face_detector , mask_detector ,

confidence_threshold , image_show=True):

# Initialize the labels and colors for bounding boxes

global currentIncorrect , currentWithout , thread1 , thread2 ,

previousIncorrect , previousWithout

labels = ["Correctly worn mask", "Incorrectly worn mask", "Without mask"]

colors = [(0, 255, 0), (0, 255, 255), (0, 0, 255)]

# Load the input image from disk , clone it , and grab the image

spatial dimensions

(h, w) = img.shape [:2]

# Construct a blob from the image

blob = cv2.dnn.blobFromImage(img , 1.0, (300, 300), (104.0 , 177.0, 123.0))

28. The blob then gets passed to the face detector and we extract the detections

from it and loop through them and saving their confidence level in a variable

while later will get compared to a threshold of 0.8 (80%).

# Pass the blob through the network and obtain the face detections

face_detector.setInput(blob)

detections = face_detector.forward ()

# Loop over the detections

for i in range(0, detections.shape [2]):

# Extract the confidence (i.e., probability ) associated

with the detection

confidence = detections [0, 0, i, 2]

29. If the confidence level is higher than the threshold then we get x,y coordinates

of that face and make sure its within the frame and save that cropped face

into a variable.

# Filter out weak detections by ensuring the confidence is

greater than the minimum confidence

if confidence > confidence_threshold:

# Compute the (x, y)- coordinates of the bounding box for the object

box = detections [0, 0, i, 3:7] * np.array([w, h, w, h])

(start_x , start_y , end_x , end_y) = box.astype("int")

# Ensure the bounding boxes fall within the dimensions of the frame

(start_x , start_y) = (max(0, start_x), max(0, start_y ))

(end_x , end_y) = (min(w - 1, end_x), min(h - 1, end_y))
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# Extract the face ROI , convert it from BGR to RGB channel

ordering , resize it to 224x224 , and preprocess it

face = img[start_y:end_y , start_x:end_x]

30. Now we need to preprocess the face for the face mask detector model by

changing its color to RGB and resize it into 224 pixels wide and tall and turn

it into an array and now get the prediction and labels to determine the color

to use.

face = cv2.cvtColor(face , cv2.COLOR_BGR2RGB)

face = cv2.resize(face , (224, 224))

face = img_to_array(face)

face = preprocess_input(face)

face = np.expand_dims(face , axis =0)

# Pass the face through the model to determine if the face has a mask or not

prediction = mask_detector.predict(face )[0]

label_idx = np.argmax(prediction)

# Determine the class label and color we’ll use to draw

the bounding box and text

label = labels[label_idx]

color = colors[label_idx]

31. We have to keep track the number of people wearing the mask incorrectly or

without mask so every time the confidence for the label incorrect or without

is given we will increase one to the variable respectively. Then check if the

currentIncorrect or Without is higher than the previous incorrect or without

mask and if so then we start a thread for playing audio if the thread isn’t

already playing and take a screenshot

if label == "Incorrectly worn mask":

currentIncorrect = currentIncorrect + 1

elif label == "Without mask":

currentWithout = currentWithout + 1

if currentIncorrect > previousIncorrect:

if thread1.is_alive ():

False

else:

thread1 = myThread ()

thread1.start ()
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i += 1

cv2.imwrite(os.path.join(FilePath , ’Frame’ + str(i) + ’.jpg’), frame)

if currentWithout > previousWithout:

if thread2.is_alive ():

False

else:

thread2 = myThread2 ()

thread2.start ()

i += 1

cv2.imwrite(os.path.join(FilePath , ’Frame’ + str(i) + ’.jpg’), frame)

32. Finally, The threads will start the following functions then we will add the

confidence to the label and draw a rectangle over the picture and make the

previous incorrect and without equal the current and reset the current for the

next frame.

class myThread (threading.Thread ):

def __init__(self):

threading.Thread.__init__(self)

def run(self):

playsound.playsound(’incArabic.mp3’, True)

playsound.playsound(’incEng.mp3’, True)

class myThread2 (threading.Thread ):

def __init__(self):

threading.Thread.__init__(self)

def run(self):

playsound.playsound(’noArabic.mp3’, True)

playsound.playsound(’noEng.mp3’, True)

# Include the probability in the label

label = "{}: {:.2f}%".format(label , max(prediction) * 100)

# Display the label and bounding box rectangle on the output frame

cv2.putText(img , label , (start_x , start_y - 10),

cv2.FONT_HERSHEY_SIMPLEX , 0.45, color , 2)

cv2.rectangle(img , (start_x , start_y), (end_x , end_y), color , 2)

previousWithout = currentWithout

previousIncorrect = currentIncorrect

currentWithout = 0

currentIncorrect = 0
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• Expected Results: Accurate and unbiased mask detection model that can detect

people wearing masks and not from reasonable distances and angles of multiple

people in a frame and correctly labeling them.

• Observed Results: We observed that the mask detection model is accurate,

unbias and can detect multiple people wearing face masks and not. The model

also detects from reasonable distances using live stream camera.

• Acceptance Criteria: The mask detection model can detect face masks with

the two labels (Correct and Incorrect) and different colors (Blue, black, white and

pink) with high accuracy from acceptable distances of multiple people’s faces.

• Test Results: The face mask detection model was able to satisfy our criteria.

The following figures will show the accuracy of our face mask detector model using two

categories. The figures include different variations of people wearing face masks correctly

and not.

Figure 3.8: Face mask detection using tensorflow and openCV on one person without
face mask and the other with

Figure 3.9: Face mask detection using tensorflow and openCV on two people without
face masks
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Figure 3.10: Face mask detection using tensorflow and openCV on two people with
face masks

3.1.3 Test 3: Face mask detection using tensorflow and openCV on

three categories

• Test Description: The main difference between this test and the previous test

is that we increased the number of labels, so instead of only detecting people

with masks and no masks, we will detect people who are wearing masks correctly,

incorrectly and no masks at all.

• Test Steps:

1. Create a dataset that includes three different files each contain images of

people wearing masks correctly, incorrectly and no mask at all.

2. Modify the training code mentioned in the previous test (Test 2) to make it

able to train three categories.

3. Train the detection model that contains three different categories and monitor

the training process as shown in Figure 3.14.

4. Save the detection model and training process plot as shown in Figure 3.15.

5. Include the detection model in the testing python code.

6. Modify the testing code mentioned in Test 2.

7. Run the testing code on the Jetson Xavier NX.

• Expected Results: Accurate and unbiased mask detection model that can detect

people wearing masks correctly, incorrectly and people without masks from rea-

sonable distances and angles of multiple people in a frame and correctly labeling

them.
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• Observed Results: We observed that the mask detection model is quite accurate,

unbias and can detect multiple people wearing face masks correctly, incorrectly and

people without face masks. The model also detects from reasonable distances using

live stream camera. However, the model can get confused when it detects people

wearing face masks correctly and under the nose by a bit.

• Acceptance Criteria: The mask detection model can detect face masks with

the three labels (Correct, Incorrect and Without) and different colors (Blue, black,

white and pink) with 95% accuracy from acceptable distances of multiple people’s

faces.

• Test Results: The face mask detection model was able to satisfy our criteria with

acceptable accuracy.

Figure 3.11: Face mask detection using tensorflow and openCV on two people (one
wearing face mask correctly and the other is not)

Figure 3.12: Face mask detection using tensorflow and openCV on two people (one
wearing face mask incorrectly and the other without a mask)
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Figure 3.13: Face mask detection using tensorflow and openCV on two people wearing
face mask incorrectly

Figure 3.14: Face mask detection using tensorflow and openCV training process on
three categories

Figure 3.15: Training loss and accuracy plot for training three categories using Ten-
sorflow and openCV

3.1.4 Test 4: Auto image capturing and Alert sound system when

detecting people without face masks or wearing them incorrectly

• Test Description: In this test, we will apply two important features to the

face mask detection system. The features include taking capturing the images of



Chapter 3 Experimental Testing & Results 53

people wearing face masks incorrectly, and alerting them using bluetooth speaker

connected to the Nvidia Jetson Xavier NX

• Test Steps:

1. Edit the testing code we developed in Test 3.

2. Add code lines to make the live stream camera capture the frames of people

not wearing face masks correctly, and save those images in a folder on the

Jetson disk.

if wearingIncorrectly and runOnce == False:

cv2.imwrite(os.path.join(FilePath , ’Frame’ + str(i)

+ ’.jpg’), frame)

i = i + 1

runOnce = True

3. Make a threading class and define a run function in it that includes the alert

sounds that we want people wearing masks incorrectly to hear.

class myThread (threading.Thread ):

def __init__(self):

threading.Thread.__init__(self)

def run(self):

playsound.playsound(’arabic.mp3’, True)

playsound.playsound(’english.mp3’, True)

4. Start the voice alert thread when the amount of people wearing face masks

incorrectly shown on the frame is at least 1.

5. Keep the voice alert thread on till all people on the frame wear their face

masks correctly.

• Expected Results: We expect the camera to capture people who are not wearing

their face masks correctly and save it on the specified file path on the Jetson, and

we expect the bluetooth speaker to keep alerting people who are not wearing their

face masks correctly.

• Observed Results: We observed that people who wore their face masks correctly

then removed it got their images taken, and people who newly entered the camera

frame got their images taken. Also, if someone is in the frame not wearing their

face mask correctly and a new person enters the frame also wearing their face mask
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incorrectly, an image will be taken. As for the bluetooth speaker, it kept alerting

all people in the frame that are not wearing their face masks correctly.

• Acceptance Criteria: The camera should capture people who are not wearing

their face masks correctly and save it, but it should not keep capturing each frame

which will keep saving unnecessary images. The bluetooth model should keep

alerting people not wearing their face masks correctly or not wearing them at all

until all people on the frame wear their masks correctly.

• Test Results: The testing results matched our criteria, and we were able to

capture images of people not wearing face masks, or wearing them incorrectly;

and we were able to make the bluetooth speaker keep alerting people (both in

English and Arabic) who are wearing face masks incorrectly (or not wearing them

at all) until they wear their face masks (or wear them correctly).

3.1.5 Test 5: Jetson Xavier and Turtlebot3 operating time

• Test Description: In this test, we will make the Jetson Xavier NX and Turtlebot3

run at maximum performance using Li-ion 4.2V 18650 (for the Jetson) and Lithium

polymer 11.1V 1800mAh (for the Turtlebot3) batteries to see how long can the

overall system operate before running out of charge.

• Test Steps:

1. Connect 3 Li-ion 4.2V (max charged) to the Jetson Xavier NX using an

adapter.

2. Run the code for face mask detection.

3. Connect the Lithium polymer 11.1V (max charged) to the Turtlebot3.

4. Run the python code using SLAM for autonomous navigation.

5. Make the robot navigate at 70% of the maximum speed since running the

robot at 100% makes the camera jitters.

6. Set a timer as soon as the system starts to run.

7. Wait for the Jetson Xavier NX and Turtlbot3 to run out of charge.

8. Stop the timer when one of the systems stops responding.

9. Calculate the period the system was running for.
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• Expected Results: The overall system is expected to last more than an hour

(hour at minimum) since each battery contains 8.15W per hour which means 3

batteries will have a total of 24.5Wh, and the Jetson Xavier NX needs 15W to

operate at maximum performance (6 CPU cores). As for the Turtlbot3, it uses

Lithium polymer 11.1V 1800mAh which supplies a total of 19.98W per hour which

means it should make the Turtlebo3 run for 2.5 hours according to the official site

of TurtleBot3. Specifications of the TurtleBot3 Burger

• Observed Results: The Jetson Xavier NX lasted 3 hours before running out of

charge, and the Turtlebot3 lasted 2 hours before running out of charge.

• Acceptance Criteria: The overall system can last 2 hours which is an acceptable

period of time for the robot to navigate autonomously around the IoT lab. To

extend this period, we can increase the capacity of the batteries.

• Test Results: The mask detection system can run for 3 hours, and the au-

tonomous navigation can run for 2 hours. These are acceptable times for Lab

sessions in the IoT lab.

3.1.6 Test 6: Face mask detection model accuracy on different face

mask colors

• Test Description: In this test, we will test our tensorflow2 and openCV face

mask detection model accuracy and performance on different face mask colors to

evaluate the accuracy.

• Test Steps:

1. Prepare different mask colors for testing. (Blue, Black, White and Pink)

2. Start a recording software to record this test.

3. Run the testing code on the Jetson Xavier NX.

4. Wear each mask in front of the live stream camera.

5. Wear each mask correctly and incorrectly in different face angles and dis-

tances.

6. End the recording and observe the results.

https://emanual.robotis.com/docs/en/platform/turtlebot3/features/#specifications
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• Expected Results: The face mask detection model is expected to detect face

masks correctly and incorrectly with high accuracy despite the differences of face

mask colors since our data set included various face mask colors to avoid any

biases.

• Observed Results: The face mask detector model was able to detect face masks

with different colors with it’s correct labels from different face angles and distances

with high accuracy despite the color black which means our data set lacks a bit of

images where people wear black face masks incorrectly and correctly.

• Acceptance Criteria: The model should be able to detect face masks with

different colors with different face angles and distances with high accuracy.

• Test Results: The test results matched our acceptance criteria, and the detec-

tion model was able to detect different face mask colors from different angles and

distances at high accuracy as shown in the following figures.

Figure 3.16: Wearing blue face mask incorrectly with an accuracy of 72.81%

Figure 3.17: Wearing blue face mask correctly with an accuracy of 93.32%
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Figure 3.18: Wearing pink face mask incorrectly with an accuracy of 71.67%

Figure 3.19: Wearing pink face mask correctly with an accuracy of 67.88%

Figure 3.20: Wearing black face mask incorrectly with an accuracy of 34.38%
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Figure 3.21: Wearing black face mask correctly with an accuracy of 93.03%

Figure 3.22: Wearing white face mask incorrectly with an accuracy of 81.54%

Figure 3.23: Wearing white face mask correctly with an accuracy of 83.02%

3.1.7 Test 7: Autonomous navigation using ROS

• Test Description: In this test, we used ROS, SLAM and code manipulation

to make the TurtleBot3 run autonomously on an explored environment. For this
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project, we used the IoT lab at the ECBE department in Abu Dhabi University

as our environment.

• Test Steps:

1. Install ROS melodic on remote PC and all the dependant packages of ROS

melodic 1 and Turtlebot3. PC setup

2. Configure IP address of the remote PC and save it on bashrc script.

3. Install TurtleBot3 melodic image, and flash it to the microSD card.

4. Boot the Rpi 3B+ using the microSD card and do the ROS1 network config-

uration. ROS1 Network Configuration

5. Install openCR and all the necessary packages on the Rpi 3B+. OpenCR

Setup

6. Open SLAM node on remote PC as master, and run TurtleBot3 bring up on

the Rpi 3B+.

7. Launch SLAM node on remote PC and control the TurtleBot3 using teleop-

eration to navigate through the unexplored environment (IoT Lab).

8. Start exploring and drawing the map as shown in Figure 3.24.

Figure 3.24: Drawing the IoT Lab in Abu Dhabi University using SLAM

9. Once we are done, we saved the map on remote PC.

10. Next, we can use pose estimation and goal setting to estimate the current

position of the TurtleBot3 on the map and start setting goals (points on the

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/#pc-setup
https://emanual.robotis.com/docs/en/platform/turtlebot3/sbc_setup/#sbc-setup
https://emanual.robotis.com/docs/en/platform/turtlebot3/opencr_setup/#opencr-setup
https://emanual.robotis.com/docs/en/platform/turtlebot3/opencr_setup/#opencr-setup
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map) to make the robot move autonomously and avoid any obstacles on the

way within the range of the LiDAR sensor.

11. Finally, we can use code manipulation using python to make the robot go to

random points for as long as we want.

• Expected Results: The robot moves to the points we set (Total of 4 points in

form of a rectangle that covers the whole IoT Lab) while avoiding obstacles on the

way.

• Observed Results: The robot was able to follow the goals set while avoiding

any obstacles on the range of the LIDAR sensor.

• Acceptance Criteria: The robot can autonomously navigate throughout the

whole lab in a uniform way while avoiding any obstacles in range of the LIDAR

sensor.

• Test Results: The test results matched our acceptance criteria, and the robot was

able to autonomously navigate through the IoT Lab while avoiding any obstacles

on the way as shown in Figure 3.25.

Figure 3.25: Autonomous navigation and obstacle avoidance using TurtleBot3 in the
IoT Lab

3.2 Results and Discussion

In this section, we will discuss all the results obtained from the previous chapter and an-

alyze them in addition to unmentioned variables in the testing stage that could possibly

affect the face detection model’s accuracy and performance.
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3.2.1 Data set size

Different data set sizes were used to train our face mask detection model using tensorflow

and openCV, and what we want to conclude is how data set size can affect the accuracy

of our detection model. So, different data sets were created that include two (correct,

incorrect) and three categories (correct, incorrect, without); the data sets created are

the following:

• Data set 1:

1. Number of labels: 2 (correct, incorrect)

2. Images per label: 7,600 images

• Data set 2:

1. Number of labels: 2 (correct, incorrect)

2. Images per label: 4,600 images

• Data set 3:

1. Number of labels: 2 (correct, incorrect)

2. Images per label: 2,200 images

• Data set 4:

1. Number of labels: 3 (correct, incorrect, without)

2. Images per label: 2,200 images

• Data set 5:

1. Number of labels: 3 (correct, incorrect, without)

2. Images per label: 1,000 images

3.2.1.1 Data set 1

After creating these data sets, we trained the model on a fixed number of epochs (11),

batch size (32) and learning rate (0.0001) to make sure that the only variable in this

experiment is the data set size. The results will show the training time, average precision
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and recall accuracy, as well as, validation loss and accuracy at each epoch.

In Data set 1, the data set size was 7,600 images per label which means the total of

data set 1 is about 15,200 images; these images will be split into training, validation

and testing (70% for training, 10% for validation and 20% for testing). Each epoch, all

of the training data set will be shuffled and passed through the model which will start

learning from the training data and make predictions on the validation, and the model’s

predictions are represented as validation accuracy and loss in each epoch. Mostly, the

training and validation accuracy should increase by each epoch since the model will

start learning more and predict better. In cases where the data is insufficient, bias or

misleading could make the model predict worse, and the user can see that the validation

accuracy is decreasing and the validation loss is increasing. In addition, there are other

cases where the model’s training accuracy is increasing while the validation accuracy is

decreasing, and the validation loss is increasing; this means that the model is overfitting,

and what overfitting means is that the model is memorizing the training data instead of

learning it which leads to poor performance and accuracy when it comes to predicting

new data that the model has not seen before. On the contrary, underfitting occurs when

the model does not have enough training data to learn from it and start predicting new

data (testing data) accurately. Furthermore, the results of training the Data set 1 model

can be shown in Figure 3.26 and Figure 3.27.

Figure 3.26: Training process and classification report for Data set 1
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Figure 3.27: Training loss and accuracy plot for Data set 1

One important thing we need to consider is that numbers are numbers meaning that the

best proof of accuracy is by testing the model not by only judging the training process

of the model. It is common that some models show high accuracy in training but poor

performance in testing. The testing results for data set 1 model can be shown in Figure

3.28 and Figure 3.29.

Figure 3.28: Face mask detection model accuracy of Wearing face mask incorrectly
using Data set 1
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Figure 3.29: Face mask detection model accuracy of Wearing face mask incorrectly
using Data set 1

3.2.1.2 Data set 2

In Data set 2, we have reduced the total number of training data to see if there is a

relation between data set size, accuracy and performance. It can be seen in 3.30 that

the model’s average accuracy is more than Data set 1 model’s accuracy. Why training

more images does not always mean better accuracy? Although this is true for most

data sets, our data set depends more on the variations of our images and how easy it

can be separated linearly and differentiated by the model; this means that in Data set

1, the model faced a hard time separating face masks worn correctly and incorrectly

despite the large number of images provided. In addition, does larger data set size mean

overfitting? Not really; Why? because there are many cross-validation methods that

can be used in order to prevent the model from overfitting despite the size of the data

set used; cross-validation is a technique used in machine learning to prevent overfitting

by dividing the data set into partitions; this way the model will not learn from the

entire data set. Moreover, the model will divide the data set into training, testing and

validation; and it can also divide the training data into folds (K-fold). How does this

help? instead of making the model learn all the data set, it will learn from new data

partitions each epoch which means the model will see new images each round, and this

will allow the model to learn and predict more accurately on new data. Moreover, the

cross-validation method we used for our face mask detection model is called the Hold-out

method; this method is considered to be the simplest and most efficient method used for
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cross-validation on large data sets, and what this method does is that it divides the data

set into training, testing and validation (Usually 70% of the data set goes for training,

10% for validation and 20% for testing); the model will learn from the training partition

and start practicing by making predictions on the validation partition, and the model

will calculate the loss and accuracy for both training and validation data which will

help it learn and predict more accurately during the next epochs (rounds). The training

results for data set 2 can be shown in Figure 3.30 and Figure 3.31

Figure 3.30: Training process and classification report for Data set 2

Figure 3.31: Training loss and accuracy plot for Data set 2

Although training and validation accuracy in Data set 2 is better than Data set 1, the

testing results show otherwise; and this is due to the reduction in the data size which

removed many images that could have improved the accuracy of our model, which made
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the training process easier to classify due to the little variations in the data set. The

testing results for data set 2 model can be shown in Figure 3.32 and Figure 3.33.

Figure 3.32: Face mask detection model accuracy of Wearing face mask incorrectly
using Data set 2

Figure 3.33: Face mask detection model accuracy of Wearing face mask correctly
using Data set 2

3.2.1.3 Data set 3

In data set 3, we reduced the two label data set even more; this time we made it 2,200

images per label which means about 4,400 in total. The same issue raises when we

reduce the number of images in our data set, which is having higher accuracy in training

and validation as shown in Figure 3.34 and Figure 3.35 while the accuracy in testing is

much lower which can be seen in Figure 3.36 and Figure 3.37.
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Figure 3.34: Training process and classification report for Data set 3

Figure 3.35: Training loss and accuracy plot for Data set 3

Figure 3.36: Face mask detection model accuracy of Wearing face mask incorrectly
using Data set 3
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Figure 3.37: Face mask detection model accuracy of Wearing face mask correctly
using Data set 3

It can be noted from the previous figures that the accuracy of this model is 10% to 30%

lower than the previous models (data set 1 and 2) when it comes to detecting from the

same distances and face angles; this is due to the low data size used for this model.

3.2.1.4 Data set 4

In data set 4, we increased number of labels to three and separated the data set into three

categories instead of two. The labels now are (”Correct”, ”Incorrect” and ”Without”);

this is an improvement to the previous data sets since now we will be able to classify

people wearing face masks correctly, incorrectly and people without face masks at all.

The number of images used in this data set is 2,200 per label which gives us a total of

6,600 images. Increasing the data set size comes with a cost; the more data we use the

more RAM the training process consumes whether we are training on CPU or GPU.

The training process for data set 4 can be shown in Figure 3.38 and Figure 3.39 while

the accuracy in testing is much lower which can be seen in Figure 3.40 and Figure 3.41.



Chapter 3 Experimental Testing & Results 69

Figure 3.38: Training loss and accuracy plot for Data set 4

Figure 3.39: Training process and classification report for Data set 5

Figure 3.40: Face mask detection model accuracy of Wearing face mask correctly and
without using Data set 4
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Figure 3.41: Face mask detection model accuracy of Wearing face mask incorrectly
using Data set 4

3.2.1.5 Data set 5

In data set 5, we reduced the data set size from 2,200 to 1,000 images per label which

gives us a total of 3,000 images. In the training process, the average accuracy was lower

than the average accuracy in data set 4 by 1% which is not a significant difference, but

this can only judge by testing the model. The training process for data set 5 can be

shown in Figure 3.42 and Figure 3.43, and the results of testing our model using data

set 5 can be shown in Figure 3.44, Figure 3.45 and Figure 3.46.

Figure 3.42: Training process and classification report for Data set 5
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Figure 3.43: Training loss and accuracy plot for Data set 5

Figure 3.44: Face mask detection model accuracy of Wearing face mask incorrectly
and correctly using Data set 5

Figure 3.45: Face mask detection model accuracy of Wearing face mask incorrectly
using Data set 5
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Figure 3.46: Face mask detection model accuracy of Wearing face mask correctly and
without using Data set 5

It can be noted from the previous figures that the accuracy of this model is a bit lower

(1% 20%) than the previous model (data set 4) when it comes to detecting from

different distances and face angles.

3.2.2 Number of epochs and Batch size

The number of epochs determines the number of complete passes through the training

data set. For our project, we used different numbers of epochs and found that 11

is enough to provide accurate results. Reducing the number of epochs can lead to

underfitting since the model will not have enough time to learn, and increasing the

number of epochs can lead to overfitting since the model will keep learning the same

data for long periods. The batch size is the number of samples processed before the

model is updated, and having a batch size of 32, 64 or 128 is considered to be common.

If we choose a batch size of 128, the model will take the first 128 images from the data

set and start training them; once the model finishes training the first 128 images, it will

take the another 128 images and so on. Shuffle may apply to help countering overfitting

which means the model will randomly take 128 images from the data set each time.

3.2.3 Distance and Face angle

Another important factor related to the performance of our model is how well it can

detect people wearing face masks correctly or not at long distance and different face
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angles. For instance, make the model detect from distances over 4 m will not be possible

in our case since the face detector will not be able to detect any faces in the frames due

to the small size of the face at long distance, and what we can do is either increasing the

zoom of the camera, getting a camera with better megapixels and exposure which will

make people’s faces appear clearer on the frame, or making a new face detector that could

detect faces from long distances. In addition, face angles could confuse the detection

model in some cases which makes it challenging for the model to classify correctly. As

an example, consider the case in Figure 3.47 where it can be clearly seen that the person

is wearing his face mask incorrectly, but the model predicts that the person is wearing

his face mask correctly due to the face angle of that person.

Figure 3.47: Incorrect classification form the model due to the angle of the face

3.3 Analysis and Interpretation of Data

3.3.1 Face mask detection model evaluation

In this section, we will evaluate our face mask detection model; and based on this

evaluation, it will come clear whether our model is truly detecting face masks with high

accuracy and precision.



Chapter 3 Experimental Testing & Results 74

3.3.1.1 Metrics for performance evaluation

Our main focus will be on the predictive capability of our model which means precision

or recall is more important than how fast it takes to classify people in the frame.

To describe the performance of our model, we simply construct a confusion matrix. The

confusion matrix can be shown in Figure 3.48

Figure 3.48: Confusion matrix along with the most widely-used metrics [15]

Two other metrics that are often used to quantify model performance are precision and

recall.

• Precision is defined as the number of true positives divided by the total number of

positive predictions. It quantifies how correct our model’s positive predictions were

(in our case, positives mean correctly worn masks and negatives mean incorrectly

worn masks). This means that the more the model correctly classifies the label

”correctly worn masks” the more precise it will be.

• Recall/Sensitivity is defined as the number of true positives divided by the total

number of true positives and false negatives (all actual positives). It quantifies out

of all people that are wearing their face masks correctly, how many did the model

(AI) miss?

In this project, precision is more important than recall because false positive is expensive;

meaning if the AI predicted that the person is wearing his/her face mask correctly while

he/she is not, that person will get away with wearing his/her face mask incorrectly and

be the reason of spreading the disease much further.
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3.3.1.2 Model evaluation and comparison

In this sub section, we will evaluate the best model we have come up with, and then try

to come up with a better performance model that will achieve higher precision than the

previous model. To evaluate our model, we will have to construct an ROC (Receiver

Operating Characteristic) curve which plots the TPR (True Positive Rate) vs. the FPR

(False Positive Rate). To construct an ROC curve, we need to:

1. Use the face mask detection model to produce a probability of correctly worn

masks ( P(correctly worn masks) ) in each frame captured from the live stream

camera. The total number of test instances (frames) that will be used are 100.

2. Sort the instances according to the P(correctly worn masks) in decreasing order.

3. Apply threshold at each unique value of P(correctly worn masks) and count the

number of TP, FP, TN, FN at each threshold.

Following the previous steps, we will be able to construct a table that will help us

into constructing an ROC curve for our model. The first 29 instances of the table we

constructed for the base model can be shown in Table 3.49

Figure 3.49: Testing instances up to 29 frames, Probability of correctly worn masks,
True class, Prediction, TP, FP, TPR, FPR, Recall and Precision for the base model
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The ROC curve constructed from the table shown in 3.49 of the base model can be

shown in Figure 3.50

Figure 3.50: ROC curve of the base model shown in green line with the default
classifier shown in red

To understand how we judge classifiers based on the ROC curve, we can take a look at

Figure 3.51; where it shows that the more the curve is leaning towards the True Positive

Rate (TPR) the more precise and accurate it is.
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Figure 3.51: ROC Interpretation [15]

Next, we will try to construct a better curve by enhancing the performance of our face

mask detection model. To do that, we need to:

• Increase the number of images that show people wearing face masks correctly and

not in 90 degrees.

• Split the 3 label model into 3 models each contain a dominant label; meaning

model 1 will contain more images of the label ”Correctly worn mask” than the

other labels which are ”Incorrectly worn mask” and ”Without face mask”. This

way, each model will make its own prediction on the incoming frame, and the model

with the highest prediction probability will be chosen to make the prediction on

that frame and label it.

The new model (better performance model) was trained and then tested on 100 different

frames which will be used as testing instances for constructing an ROC curve. The table

constructed for the better performance model can be shown in Figure 3.52
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Figure 3.52: Testing instances up to 30 frames, Probability of correctly worn masks,
True class, Prediction, TP, FP, TPR, FPR, Recall and Precision for the better perfor-

mance model

The ROC curve constructed from the table shown in Figure 3.52 can be shown in Figure

3.53.

Figure 3.53: ROC curve of the better performance model shown in blue line with the
default classifier shown in red

As can be shown in Figure 3.53, the line of the better performance model covers more
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area under the graph which means it has more precision than the base model shown in

Figure 3.50.

To understand how the better performance model gave a better ROC curve than the

base model, we summarized the main differences in Table 3.1

The final ROC curve that shows both base model and better performance model curves

can be shown in Figure 3.54 for comparison.

Figure 3.54: ROC curve of the better performance model shown in blue line, base
model shown in green line and the default classifier shown in red

3.3.2 Summary of Analysis and Interpretation of Data

To summarize with, data set size, number of epochs, batch size, distance and face angle

have different effects on accuracy of the detection model. Table 3.2 shows the summary

of our discussion and analysis section.
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Differences Base model Better performance model

Number of models 1 Model 3 Models

Labels per model
Correct, Incorrect and

Without

Model 1: (Correct, Other)

Model 2: (Incorrect, Other)

Model 3: (Without, Other)

Dataset size 10,000 images 12,000 images

Image distribution
2,500 images per label
(Equal distribution)

50% for label x, 25% for
label y, and 25% for label z.
(x, y, and z differs based on
the model being trained)

Percentage of 0-degree
face images in each label

∼85% ∼60%

Percentage of 90-degree
face images in each label

∼5% ∼20%

No. of epochs 11 epoch 14 epoch

Batch size 32 128

Data augmentation Yes Yes

Face Detector Threshold 0.50 0.50

Mask Detector Threshold
(between 0.50 and 1)

Picks the label with its
color with the highest
accuracy in the model

Picks the model that gives
the highest accuracy between
the 3 models then pick the
label with its color with
the highest accuracy in
that model

Avg. accuracy per label
while facing the camera
with a 0-degree

Correctly worn mask:
90∼100%

Incorrectly worn mask:
70∼100%

Without mask:
95∼100%

Correctly worn mask:
85∼100%

Incorrectly worn mask:
80∼100%

Without mask:
95∼100%

Avg. accuracy per label
while facing the camera
with a 90-degree

Correctly worn mask:
65∼100%

Incorrectly worn mask:
50∼100%

Without mask:
80∼100%

Correctly worn mask:
70∼100%

Incorrectly worn mask:
65∼100%

Without mask:
90∼100%

Avg. Precision 0.775 0.914

Avg. Recall 0.654 0.654

Table 3.1: Base model Vs. Better performance model
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Two category model
(Correct, Incorrect)

Three category model
(Correct, Incorrect, Without)

Dataset size
(per category)

7,600 images per category
Avg. training accuracy: 91%
Actual accuracy: 80 - 99%

4,600 images per category
Avg. training accuracy: 92%
Avg. testing accuracy: 70 - 99%

2,200 images per category
Avg. training accuracy: 93%
Avg. testing accuracy: 55 - 99%

2,200 images per category
Avg. training accuracy: 95%
Avg. testing accuracy: 75 - 99%

1,000 images per category
Avg. training accuracy: 94%
Avg. testing accuracy: 50 - 99%

No. of epochs
Number(s): 11, 12, 13
Avg. training accuracy: 93%
Underfitting: <8

Number(s): 11
Avg. training accuracy: 94%
Underfitting: <8

Batch Size

Value(s): 32
Avg. training accuracy: 93%

Value: 128
Avg. training accuracy: 93%

Value: 32
Avg. training accuracy: 94%

Value: 128
Avg. training accuracy: 94%

Distance

Distance: 1 to 4m
Avg. testing accuracy: 60 - 99%

Distance: above 4m
Avg. testing accuracy: 0%
(Faces are not detected at
distances above 4m)

Distance: 1 to 4m
Avg. testing accuracy: 50 - 99%

Distance: above 4m
Avg. testing accuracy: 0%

Face angle

Facing front
Avg. testing accuracy: 75 - 99%

Facing left/right
Avg. testing accuracy: 60 - 97%

Facing up/down
Avg. testing accuracy: 50 - 94%

Facing front
Avg. testing accuracy: 70 - 99%

Facing left/right
Avg. testing accuracy: 55 - 92%

Facing up/down
Avg. testing accuracy: 50 - 90%

Table 3.2: Dataset size, No. of epochs, Batch size, Distance and Face angle effect on
accuracy
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In addition, the summary of the training process time, accuracy and model performance

based on different categories, data sizes and distance can be shown in Table 3.3. We can

conclude from Table 3.3 that the performance is still the same despite the data set size

and distance; the model performance depends on the GPU used and camera. A high

quality camera with better shutter speed and exposure can increase the performance

significantly, and deploying the model on a more powerful GPU with high compatibility

can also increase the performance.

Results

Two Labels
(Data set 1)

Total images: 15,200
Training time: 1 hour 40 min
Detection distance (Jetson): <= 4m
Performance (FPS): 6∼9 fps

Two Labels
(Data set 2)

Total images: 9,200
Training time: 1 hour 27 min
Detection distance (Jetson): <= 4m
Performance (FPS): 6∼9 fps

Two Labels
(Data set 3)

Total images: 4,400
Training time: 42 min
Detection distance (Jetson): <= 4m
Performance (FPS): 6∼9 fps

Three Labels
(Data set 4)

Total images: 6,600
Training time: 59 min
Detection distance (Jetson): <= 4m
Performance (FPS): 6∼9 fps

Three Labels
(Data set 5)

Total images: 3,000
Training time: 29 min
Detection distance (Jetson): <= 4m
Performance (FPS): 6∼9 fps

Table 3.3: Summary of data set size, training time, distance and performance
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Conclusion

4.1 Summary

In this project, we proposed a self-driving mask detection robot as a solution to refrain

people that wear their face masks improperly or not wear them at all. The dataset

provided online contained various images that show people with different mask colors; it

also includes images of people wearing face masks properly and improperly. The dataset

was then preprocessed then trained using the TensorFlow and OpenCV on the Jetson

Xavier. After we are done with the training, The Face mask detector was then used to

test different images to prove that the detector is correctly labeling the images. Different

labels were used in this paper including the “Correctly Wearing a Mask”, “Without

Mask” and “Wearing a Mask Improperly” labels. The TensorFlow and OpenCV detector

can then be deployed to the Nvidia Jetson Xavier NX, and with the Logitech camera

attached to it, it can process the real-time video frame by frame and apply the Face

Mask detector to label the frames. The labeled frames can then be used to extract the

images where people wore the mask incorrectly which can be used for different purposes

(mainly punishment).In Addition, The labeled frame will also be used to generate a

voice to warn the person who is not wearing the mask properly or not wearing it at all.

The turtlebot3 has an important part in our project since it can be used to navigate

autonomously and avoid obstacles in many places. The robot can create a map using

the 360 Lidar sensor which scans the area around the robot and draws a 2D map in

the SLAM software. The robot can then navigate autonomously from different points

through the created map.

83
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For the testing and results, we did a total of 6 tests. The first 3 tests were about

testing different face mask detection models using different algorithms. First, we built a

face mask detection model using YOLOv2 on MATLAB. In this test we used the image

labeler tool in Matlab to label our data set images into three categorize, wearing a mask,

incorrectly wearing a mask, and not wearing a mask. The YOLOv2 object detector was

able to detect face masks from different angles with high accuracy. In the second test

we used TensorFlow and OpenCV to build a face mask detection model for 2 labels;

wearing a mask and not wearing a mask. We used an open-source data set the contains

14k images dived into 2 categorize 7500 images of people wearing mask correctly and the

second half contain images of people not wearing a mask or wearing it incorrectly. In this

test, we used a pre-trained neural network model to detect faces first called FaceNet and

then we applied the face mask detector model that we have trained using MobileNetV2

to be able to detect and label the image frames. We observed that the detector was able

to detect faces and classify them as either wearing mask or not wearing a mask. The

final model that we have built and the test was developing a face mask detector model

that contains 3 labels using the method we used in test 2. We modified the python code

to add a third label which is detecting people who are wearing the mask improperly.

We obtained very good results, the model was able to function from different angles

and distances with an accuracy of 95%. Next, We tested the Auto image capturing and

Alert sound system when detecting people without a face mask or wearing their mask

incorrectly. Furthermore, We did a test on both the Jetson Xavier and the TurtleBot3 to

test their operating lifetimes. We observed that the Jetson can operate for up to 3 hours

on its max performance when using 3 Li-on 4.2V batteries connected in series. However,

for the Trutilbot3 it was able to last up to 2 hours using an 11.1V lithium battery with

a capacity of 1800mAh.For the final test, We Tested the Autonomous navigation using

ROS and SLAM to make the TurtleBot3 run autonomously in a closed environment.

We observed that the robot was able to follow points that we set on the virtual map

using SLAM and it was avoided all the obstacles that have been detected by the LIDAR

sensor.

https://machinelearningmastery.com/how-to-develop-a-face-recognition-system-using-facenet-in-keras-and-an-svm-classifier/
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4.2 Future Improvements and Takeaways

Many future improvements can be done to our self-driving face detection robot. From the

hardware point of view, we can improve the capacity of the batteries we used to extend

the overall operating time of our system. In addition, we can get a high quality camera

with better shutter speed, exposure and megapixels which will make face and mask

detection easier to detect and more accurate. Also, we can add ultrasonic sensors to make

the robot detect any small objects on the ground and avoid them while autonomously

navigating the area since the Lidar sensor can miss small objects that are not in its range

of vision. Moreover, making the robot stop when it detects faces can reduce camera blur

and jitter, increase prediction accuracy and save power at the same time. Finally, we

can use more powerful computers that could train very large number of data set sizes

to increase the accuracy of our model even further.

4.3 Learned Lessons

In this project, We had a great experience in dealing with Machine learning and computer

vision. Through this project we used different types of artificial intelligence algorithms

such as using YOLO v2 in Matlab then we switch our algorithm to use Python libraries

since they are easier to use and implement on single-chip computers. To start with,

since we were more familiar with MATLAB and its computer vision tools, we went with

it to implement our face mask detector YOLOv2 Model using the ImageLabeler tool

from the computer vision toolbox in MATLAB. We got a very good result from it, but

since we are using the Jetson Xavier as our supercomputer it has some limitations to

use MATLAB on it. We learned from this experience, so we searched for an alternative

and in this case, we found that python has many good and light libraries that can be

used to achieve the same goal.

Moreover, we gained a good amount of knowledge through using new technologies. Since

we went with python and its open-source libraries such as OpenCV and TensorFlow

which provide us with many classes and pre-trained machine learning models that can

be imported and used directly. We did a lot of research about how to implement this

core part of our project(Face mask detection). Our main learning source was reading

about previous similar projects and searching online. Fortunately, we found a tutorial
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on youtube about how to train your model using MobileNetV2 from the TensorFlow

library which is the main Model used in our project.

For the Self-driving Robot, we used the turtle bot 3 original documentation to install

and configure the robot. Then, we followed a youtube tutorial on how to set up SLAM

and draw the 2d MAP for a closed area by controlling the robot manually. In this

part, we faced an issue where the robot was not following the command we are sending

to control the robot and draw the map. We followed different tutorials and did much

research until we found the issue and fixed it. In general, we faced many difficulties and

challenges in this project, but we always learned and gained more experience from those

failers which drove us to accomplish the main goal of this project.

4.4 Team Dynamics

All team members of this project are computer engineering students.

4.4.1 Team Members

Amer Barhoush: Amer is a hard working student and thrives under pressure. He always

seek improvements and perfections no matter how small it is. He is quite knowledgeable

in the AI, machine learning and computer vision field which helped us a lot in this

project.

Omar Farag: Omar is an engaging student that always suggest new creative plans and

ideas to improve the overall system design. He has both software and hardware skills

that helped us throughout this project.

Sohrab Setoodeh: Sohrab is a team worker and creative designer; he can think of new

ways to enhance the feasibility of the system and reduce the power consumption.

Zayed Aslam: Zayed is a positive and quick thinker student that can overcome many

difficulties in short time; his analytical and critical thinking skills makes him think

deeply into problems and solve them accordingly.
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4.4.2 Tasks and Work Division

To have a good result we as a team worked as one hand everyone in the group helps

each other and share every single experience we have in every field. We choice Amer

to be the leader because he is a very justice and restrictive person. He divides every

task equally and gives a suitable deadline. We divide work into two main tasks which

are the autonomous driving robot and mask detection. Each two-member has taken

on the main part but that not mean we didn’t work on other tasks. Each member

when he has a problem he posts on whats-app and we share our knowledge to solve the

problem. However, Amer and Zayed take the mask detection part because there where

has experience in the Artificial intelligent part as they to the AI course. Also, Omar has

a very big fact that we had very excellent mask detection result because he improves

Amer and Zayed model to work better. On the other hand, Sohrab and Omar work

in building an autonomous driving robot as they know hardware and communication

between it. The communication part also Amer help to had communication between

raspberry and Jetson Xavier which make the robot be control by the main part of the

robot and not using a computer.

4.4.3 Team Communication and Gantt Chart

The main factor of success is the communication between groups. We as a team create

several groups to have different types of communication for example we make a group

in Microsoft teams to had video call communication Also edit the code together by

sharing the screen and We create a whats-app group to have a fast chat and exchange

the experience. In addition, we create another group that includes the capstone member

and our Doctors to show the progress of the project and have some advice. On the other

hand, we had a lot of meeting in a different place such as the university to test our robot

and in one member’s house to build some parts.
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Figure 4.2: MS Team Group

Figure 4.3: Whats app Group

Figure 4.4: Home development
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4.5 Impact Statement

Nowadays, the world is in a rare situation where everyone needs to follow a new rule

issued by the government which is wearing face masks in public places. The robot we

designed detects people wearing their face masks correctly, incorrectly, or not wearing

them at all; then, it will alert them to wear their face masks properly. Our robot also

helps society reduce the number of infected people by making them wear face masks all

the time, which will increase awareness between people.

4.5.1 Environmental Impact

Our Self-driven robot will ensure a better and safer environment for the public with

the features that we have on our robot. The robot will have cleaner air with less air

pollution that may affect and damage public health. In addition, we can add a solar

panel charger for the batteries as a future improvement to increase the sustainability of

our robot to work longer hours depending only on solar power, which will have positive

impacts on our environment.

Figure 4.5: Environmental Impact Tool Screenshot
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4.5.2 Economic Impact

The robot will affect the security guard jobs since the robot can monitor people with

higher operating hours with less cost. This may lead some companies to choose the

robot over humans in such tasks. We have already seen similar robots in business places

in Dubai. where they have implemented self-driving robots to detect if people are not

wearing masks. So we can say it may decrease the opportunity of some jobs such as

security guards in closed places. However, it can increase the growth of the technology

industry since it’s a new innovation that can ensure better safety in businesses and closed

places.

Figure 4.6: Economic Impact Tool Screenshot 1

Figure 4.7: Economic Impact Tool Screenshot 2

4.5.3 Social Impact

Our Self-driving mask detection robot ensures public safety and health by detecting

people who are not wearing their mask in the proper way which can affect both the

public and theme-self health. Studies showed that wearing a media face mask can

reduce the spread of Covid-19 by 80 percent or more [18]. Therefore, the robot can help
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to reduce in making sure that everyone wears their masks especially in public places

where many people come from different places. By using the Alerting sound system

that we developed, the robot will keep alerting the people and taking pictures of the

ones who are not wearing their masks properly.

The robot can reduce the stress level and increase the safety of the public. Since the

robot will be controlled by Ai autonomously this helps us let it operate for a longer time

with high accuracy. We can say that it will ensure a better quality of life in the public

area. Because it will help with reducing the stress levels. When the people see such

invocation this will make them more comfortable about their health’s.

Figure 4.8: Social Impact Tool Screenshot 1
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Figure 4.9: Social Impact Tool Screenshot 2

Figure 4.10: Social Impact Tool Screenshot 3



Appendix A

Python code for face mask

detection testing

# import the necessary packages

import playsound

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input

from tensorflow.keras.preprocessing.image import img_to_array

from tensorflow.keras.models import load_model

from imutils.video import WebcamVideoStream

import numpy as np

import imutils

import time

import cv2

import os

from imutils.video import FPS

from threading import Thread

import threading

import math

import multiprocessing

import tensorflow as tf

class WebcamVideoStream:

def __init__(self , src =0):

self.stream = cv2.VideoCapture(src)

(self.grabbed , self.frame) = self.stream.read()

self.stopped = False

def start(self):

Thread(target=self.update , args =()). start()

return self

def update(self):

94
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while True:

if self.stopped:

return

(self.grabbed , self.frame) = self.stream.read()

def read(self):

return self.frame

def stop(self):

self.stopped = True

def detect_and_predict_mask(frame , faceNet , maskNet ):

(h, w) = frame.shape [:2]

blob = cv2.dnn.blobFromImage(frame , 1.0, (224, 224), (104.0 , 177.0 , 123.0))

faceNet.setInput(blob)

detections = faceNet.forward ()

faces = []

locs = []

preds = []

for i in range(0, detections.shape [2]):

confidence = detections [0, 0, i, 2]

if confidence > 0.85:

box = detections [0, 0, i, 3:7] * np.array([w, h, w, h])

(startX , startY , endX , endY) = box.astype ("int")

(startX , startY) = (max(0, startX), max(0, startY ))

(endX , endY) = (min(w - 1, endX), min(h - 1, endY))

face = frame[startY:endY , startX:endX]

face = cv2.cvtColor(face , cv2.COLOR_BGR2RGB)

face = cv2.resize(face , (224, 224))

face = img_to_array(face)

face = preprocess_input(face)

faces.append(face)

locs.append ((startX , startY , endX , endY))

if len(faces) > 0:

#Motion detection sensor , so the program will execute only if it detects

motion from people

faces = np.array(faces , dtype=" float32 ")

preds = maskNet.predict(faces , batch_size =32)

return locs , preds

class myThread (threading.Thread ):

def __init__(self):

threading.Thread.__init__(self)

def run(self):

playsound.playsound(’arabic.mp3’, True)

playsound.playsound(’eng.mp3’, True)

prototxtPath = r"face_detector\deploy.prototxt"
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weightsPath = r"face_detector\res10_300x300_ssd_iter_140000.caffemodel"

faceNet = cv2.dnn.readNet(prototxtPath , weightsPath)

maskNet = load_model ("new -mask -detector.model")

# initialize THREADED video stream

print ("[ INFO] sampling THREADED frames from webcam ...")

vs = WebcamVideoStream(src =0). start()

i = 0

FilePath = r"busted"

new_frame_time = 0

prev_frame_time = 0

previousmiddlepointx = []

previousmiddlepointy = []

middlepointx = []

middlepointy = []

distancebetweenpoints = []

counting = 0

lowestDistance = 1000

index = 0

indextochoose = 0

incorrectAmount = 0

wearingIncorrectly = False

runOnce = False

previousIncorrectAmount = 0

thread1 = myThread ()

while True:

frame = vs.read()

#frame = imutils.resize(frame , width =400)

#Only if faces are detected

(locs , preds) = detect_and_predict_mask(frame , faceNet , maskNet)

for (box , pred) in zip(locs , preds):

counting = counting + 1

(startX , startY , endX , endY) = box

middlepointx.append(endX - startX)

middlepointy.append(endY - startY)

if len(middlepointx) >= counting and len(previousmiddlepointx) >= counting:

for item in previousmiddlepointx:

currentDistance = abs(middlepointx[counting -1] - item)

+ abs(middlepointy[counting -1] - previousmiddlepointy[index])

if (currentDistance < lowestDistance ):

lowestDistance = currentDistance

indextochoose = index

index = index + 1

distancebetweenpoints.append(math.sqrt(( middlepointx[counting -1]

- previousmiddlepointx[counting -1])**2

+ (middlepointy[counting -1]- previousmiddlepointy[counting -1])**2))

(mask , withoutMask) = pred
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label = "Correct" if mask > withoutMask else "Incorrect"

if label == "Incorrect ":

incorrectAmount = incorrectAmount + 1

wearingIncorrectly = True

color = (0, 255, 0) if label == "Correct" else (0, 0, 255)

label = "{}: {:.2f}%". format(label , max(mask , withoutMask ) * 100)

cv2.putText(frame , label , (startX , startY - 10),

cv2.FONT_HERSHEY_SIMPLEX , 0.45, color , 2)

cv2.rectangle(frame , (startX , startY), (endX , endY), color , 2)

index = 0

lowestDistance = 1000

counting = 0

if wearingIncorrectly and runOnce == False:

cv2.imwrite(os.path.join(FilePath , ’Frame’ + str(i) + ’.jpg’), frame)

if thread1.is_alive ():

False

else:

thread1 = myThread ()

thread1.start ()

i = i + 1

runOnce = True

for item in distancebetweenpoints:

if (item > 25 and wearingIncorrectly) or (len(middlepointx)

> len(previousmiddlepointx) and wearingIncorrectly ):

cv2.imwrite(os.path.join(FilePath , ’Frame’ + str(i) + ’.jpg’), frame)

i = i + 1

break

if incorrectAmount >= previousIncorrectAmount:

if thread1.is_alive ():

False

else:

thread1 = myThread ()

thread1.start ()

break

previousIncorrectAmount = incorrectAmount

incorrectAmount = 0

previousmiddlepointx = middlepointx.copy()

previousmiddlepointy = middlepointy.copy()

middlepointx.clear ()

middlepointy.clear ()

font = cv2.FONT_HERSHEY_SIMPLEX

new_frame_time = time.time()

fps = 1/( new_frame_time -prev_frame_time)

fps = int(fps)

fps = str(fps)

cv2.putText(frame , fps , (7, 70), font , 3, (100, 255, 0), 3, cv2.LINE_AA)
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cv2.imshow ("Live Video", frame)

wearingIncorrectly = False

distancebetweenpoints.clear()

key = cv2.waitKey (1) & 0xFF

if key == ord("q"):

print(" Terminating ...")

break

prev_frame_time = new_frame_time

cv2.destroyAllWindows ()

vs.stop()
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